
where t(w) is implicitly specified by the condition p~(t) (Aw, $) = 6 at specified 6 ~nd 
constant temperature level ~, under the condition that w~W, a compact specified in advance. 

For the limiting case ~(u) = ~, a similar problem which will not be discussed in ietail 
here was solved in [6]. 
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SOLUTION OF INCORRECT INVERSE PROBLEMS 

O. M. Alifanov and S. V. R~yantsev UDC 536.24 

The solution of inverse heat-conduction problems using regularizing gradient 
algorithms is considered. 

Many structures in various engineering fields operate in conditions of intensive and 
often extremal thermal treatment. The general trend is associated with increase in th~ num- 
ber of thermally loaded engineering objects and with increasingly rigorous conditions ~f 
thermal loading, with simultaneous increase in reliability and working life and decrease in 
volume of the material. Questions regarding the maintenance of thermal conditions also oc- 
cupy an important position in the design and development of technological processes associ- 
ated with the heating and cooling of materials, for example, in the continuous casting of 
steel, various methods of heat treatment of metals, glass production, foundry processes, 
growing high-temperature single crystals from melt, etc. 
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The characteristic features of the thermal conditions of modern thermally loaded struc- 
tures and technological processes include nonstationarity, nonlinearity, and multidimension- 
ality of the heat-transfer phenomena. These features limit the potential for use of many 
traditional calculational-theoretical and experimental methods. Therefore, in the last i0- 
15 years, it has become necessary to develop new approaches to thermophysical and thermo- 
technical investigations. 

Among the high-priority trends, common to various branches of industry, in the develop- 
ment of theoretical and experimental fundamentals for the investigation, maintenance, and 
modification of the thermal conditions of structures and technological processes is the cre- 
ation and widespread introduction of experimental and theoretical methods of diagnostics 
and identification, based on the solution of inverse heat-transfer problems. The resolution 
of this question, in our view, lays the foundation for the realization of scientifically 
based methods for thermal experiments and tests and for considerable increase in their in- 
formation content. This, in turn, accelerates the development and refinement of progressive 
technologies; and allows new practically inertialess methods of thermophysical measurement 
to be created for regular and extremal operating conditions of the objects. There is then 
a possibility of nondestructive monitoring of the thermal-engineering characteristics of 
structures and technological processes in a real time scale, without disruption of their 
operating conditions. This approach allows the actually existing effects of nonstationarity 
and nonlinearity of the heat- and mass-transfer processes to be taken into account, permits 
experimental investigations that approximate the actual situations as closely as possible 
or that are conducted directly in the operation of the engineering objects and the industrial 
realization of the technologies, and also offers the possibility of monitoring and regulat- 
ing the thermal state of engineering systems. Note that the successful use of this methodo- 
logy is only possible with a rational combination of physical, technical, and mathematical 
aspects of the given problem. Therefore, it is necessary to develop experimental and theore- 
tical methods of diagnostics and identification, including the physical and mathematical for- 
mulation of inverse-heat-transfer problems, methods and algorithms for their solution, ex- 
periment planning, and the corresponding technical necessities for the experimental investi- 
gations. 

Recently, there has been considerable expansion in the range of formulations of inverse 
heat-transfer problems used in practice. As well as the most widespread inverse heat-con- 
duction problems (IHP), they also include inverse problems of radiational heat transfer and 
various formulations of inverse problems of conductive-radiational and conductive-convec- 
tive type [1-3]. Only the solution of IHP is dealt with below, but it must be noted that the 
region of application of the given methods and techniques may be considerably broader. 

The principal distinguishing feature of IHP is that, as a rule, it is incorrectly for- 
mulated. This is because IHP are mathematical models of physically irreversible processes, 
in which the natural relation between cause and effect is disrupted. 

The incorrect formulation of IHP leads to considerable increase in the strictness of re- 
quirements on the analysis of the problem, choice of methods for its solution, and the method 
of analyzing the experimental data. In analyzing IHP, the uniqueness of the solution is of 
especial importance. The existence and uniqueness of solutions of direct problems is suffi- 
ciently obvious from an engineering viewpoint, since direct problems are mathematicalmodels 
of real physical processes. This correctness is reinforced by rigorous mathematical inves- 
tigations, which are necessary, ultimately, because any mathematical model is constructed 
under certain simplifications and assumptions, and is not completely adequate to the real pro- 
cess being described. 

In inverse problems, it may usually be assumed, with sufficient confidence on the basis 
of physical considerations, that a solution exists with accurate initial data, but its uni- 
queness is not obvious, since the same consequence may follow from different sets of causes. 
For example, the unique determination of the coefficients C and X in the heat-conduction 
equation CT T = (XTx) x solely from the data of temperature measurements is impossible, even 
if these coefficients are constant. Analysis of the conditions of uniqueness of the IHP 
solution - see [4-6], for example - permits the formulation of requirements imposed on the 
experimental conditions when the experimental data are assumed to be analyzed by means of 
the solution of inverse problems. In those cases where the IHP solution is not unique, the 
regularizing algorithms nevertheless usually allow the a priori estimates of the desired 
characteristics to be somewhat refined, if it is ensured that the approximations to the normal 
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solution obtained are close to the initial approximation of the IHP solution, which i~ known 
to be closer to the true solution than the a priori estimate. 

The incorrectness of the IHP due to instability and sometimes also nonuniqueness of the 
solution means that regular methods must be used for their solution. All methods of solving 
IHP are arbitrarily divided into universal and problem-oriented methods. Universal methods 
include algorithms which make use only of information of the most general character and are 
suitable for the solution of a broad class of operator equations, for example, algorithms 
based on the Tikhonov variational approach to the construction of regularizing operators [7] 
and regularizing gradient algorithms [8, 9]. The problem-oriented methods include al~;orithms 
in which the specific features of the problem to be solved are taken significantly into ac- 
count - for example, direct methods [i0], "thin-wall" methods [ii], algorithms based on the 
quasisolution method, etc. Problem-oriented algorithms have a considerably narrower region 
of applicability usually imposing fairly strict requirements on the experimental cond:tions, 
but within their region of applicability they are faster than universal algorithms as a rule, 
and sometimes also more accurate. Therefore, it is desirable for researchers to have a com- 
plex of programs - both universal and problem-oriented - at their disposal. 

An indissoluble component of thermal investigations using inverse-problem methods is the 
computational experiment, especially in conducting expensive full-scale tests. Exten~;ive 
modeling is also necessary here at the stage of designing a thermal experiment (since the 
accuracy of solution of inverse problems may depend significantly, for example, on the dis- 
position of the temperature sensors [12]) and at the stage of preparing the experimental data 
for analysis, as well as in the analysis itself. In preparing experimental data for analy- 
sis, a computational experiment may be used to choose the most appropriate algorithm J~or IHP 
solution in the given specific case, to choose the parameters of the computational al~iorithm, 
to estimate the influence of indeterminacies in the mathematical model and its paramei:ers, 
the measurement errors, etc. A priori concepts regarding the character of the desirec solu- 
tion are used here, on the basis of physical considerations, previous experimental calcula- 
tions, or calculations using more complex mathematical models. Programs for IHP solution 
are used at this stage in modeling conditions, when the corresponding measurable chare.c- 
teristics are calculated from the presumed values of the desired characteristics on tLe ba- 
sis of the solution of direct problems. These data include noise, modeling the error~ of 
the measurement and recording complex. Then, from the "initial data" obtained; the corres- 
ponding IHP is solved, and the results are compared with the presumed values. 

After analyzing the real experimental data, careful modeling must also be undertaken 
in order to estimate the reliability and accuracy of the results obtained. 

Thus, developed software in the form of bundles of applied programs permitting anslysis 
of the experimental data and also broad modeling of heat-transfer processes must be a~ail- 
able to researchers. 

Programs for IHP solution on the basis of universal algorithms form a basic comporent 
of the given bundles of applied programs. Regularizing gradient algorithms recommend them- 
selves highly for use as such algorithms. Their structure is illustrated for the exanple 
of the method of fastest descent. Consider the operator equation 

Au=f, A:U~F, (1) 

where A is a Fr~chet-differentiable operator; U, F are Hilbertian spaces. Suppose that, 
instead of the accurate initial data (f, A}, approximate data {fs, Ah} are specified, where 
Hf6 -fll F J 8 and A h is some operator approximating the initial operator. 

The sequence of approximations in the method of fastest descent for the approximate 
initial data takes the form 

u~+~ = u~ - -  ~ S ' u ~ ,  n = O, 1, 2 . . . . .  ( 2 )  

where JVu n = (A'h)*(AhU n - f~) is the gradient of the discrepancy functional J(u) = (I/2). 
[IAhu -f6IIF2; A h' is the Fr6chet derivative of the operator A h at point Un; (Ah')* is the 
conjugate operator. If A h is a linear operator, then A h' = Ah, and the descent step Sa is 
calculated from the formula: 8n = lIJ'unllU~/llAhJ'UnllF =, which is obtained from the condition 
of a minimum of the functional J(u) in the given iteration. In nonlinear IHP, sufficiently 
good results are often obtained using a linear estimate for the descent step [13]: ~n = 
llJ'unllU2/IIAh'J'unllF 2. More accurate algorithms may also be used for the calculation of 8n 
in the nonlinear case, but, since they require repeated solution of the direct problem, the 
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resulting gain in rate of decrease of the function rarely justifies the additional computa- 
tional time required. 

For linear problems, the method of fastest descent with cessation according to the dis- 
crepancy criterion is a regularizing algorithm [8, 9], and in the case of a nonunique solu- 
tion of Eq. (i) stability of the approximations obtained is ensured relative to normal solu- 
tion of Eq. (i), i.e., the solution closest to the initial approximation u 0. If the errors 
of the approximation may be neglected in comparison with the errors on the right-hand side of 
Eq. (i), the cessation condition takes the form 

N = N H = m i n { n :  A~+I+A~ } 
n 2A~ < c 8  , ( 3 )  

where An = IIAhUn-f6tlF, c > 1 i s  some c o n s t a n t  i n t r o d u c e d  so as to  ensure  t h a t  Eq. (3)  ho lds  
f o r  f i n i t e  N. The i n e q u a l i t y  AN+l < c6 < AN-1 ho lds  h e r e .  In the  case  of  IHP s o l u t i o n ,  as 
shown by c a l c u l a t i o n s ,  app rox i m a t i ons  wi th  numbers c l o s e  to  N H change s lowly  and t he  p r o c e s s  
may be s topped  in  t he  f i r s t  i t e r a t i o n ,  f o r  which AN ~ 6. 

Computa t iona l  expe r imen t s  f o r  d i f f e r e n t  n o n l i n e a r  boundary and c o e f f i c i e n t  IHP have de- 
mons t r a t e d  the high efficiency of this approach also in the nonlinear case. 

Gradient algorithms are very convenient from the viewpoint of practical realization, 
since the values of the derivative operator and its conjugate operator are found from the 
solution of boundary problems that are of the same type as the initial direct problem; there- 
fore, a good program for solution of the direct problem is sufficient for calculation using 
Eq. (2). In gradient algorithms, a priori information on the desired quantity may be taken 
into account sufficiently simply [14-16]. Another advantage is the possibility of using 
the results of several measurements in sufficiently arbitrary time periods. This may be 
shown by an example. Consider a boundary IHP in a region with a movable gradient 

C(T)T, = (z(Y)r=)x, X o ( ' O < x  < b ,  0 < , < ~ m ,  

g (x, 0) = To (x), 

- -  ~,Txlx=xom = u ('r 
-- ZTd,=~ = qo (T). 

(4) 

(5) 

(6) 

(7) 

Unique determination of the unknown heat-flux density u(T) with a specified law of motion 
of the boundary X0(~) entails having at least one temperature measurement at an internal point 
of the body on the whole interval [0, ~m]: f1(~) =T(dl, ~), X0(~ m) ~ d I ! b; for the sake of 
simplicity, it is assumed that X0(T) increases monotonically. However, as is known, the in- 
fluence of measurement errors increases as the distance of the measuring device from the sur- 
face with the given boundary conditions increases. Therefore, to reduce the influence of 
measurement errors, it is expedient to place additional temperature sensors at the points 
d 2 > d s ... > d k ~ X0(0) closer to the heated surface; d 2 < X0(~m). Information from these 
sensors is only obtained, ultimately, on segments [0, Ti], i = 2, k, where ~i are determined, 
for example, from the condition X0(Ti) = d i (or from the condition that limiting temperature 
values for the given sensors are attained). In this case, the values of the operator A are 
vector functions f(T) = {fl(~), .... fk(T)}, fi(~) = T(di, z), ~e[0, ~i), i = i, k, ~l = ~m" 
Final formalization of the problem in the form of Eq. (i) demands a choice of the spaces U 

%m 
and F. The Hilbertian space L2[0, Tm] with norm 11ulIu 2 = S u2(~)d~ is chosen as U and the 

0 
Hilbertian space L2 k [0, [m] with the norm 

k rm 

i = 1  0 

as F; here 9i(T) ~ 0 is some weighting function. To derive the conjugate problem, it is ex- 
pedient to assume that fi(~) is specified on the whole segment [0, ~m] and the lack of in- 
formation when T > ~i may be taken into account by setting the corresponding weighting func- 
tion equal to zero: pi(~) = 0, T > ~i" The specific form of the function 9i(~) is chosen 
taking account of the relative measurement error at points d i. Preliminary modeling is also 
useful here. In the simplest case, it may be assumed that 
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( 1, "c ~ [0, ~i], (~) 9~ ) 

~0, "v > "v~. 

The value of the operator A may be regarded as a vector 

AU--= {AlU . . . . .  A,~u}, Aiu = [~, 

Ai : L~ [0, T~] -+ L~ [0, ,,~]. 

The derivative A' of operator A at point u is determined from the solution of a l:.near 
heat-conduction boundary problem 

(C(T(x, ~))0)~ = (~.(7"(.~, -~))0):,~, Xo(-C)<x<b,  0 < ~ , ~ ,  (8)  

o(x,  o) = o, ( 9 )  

- -  (% (T (x, *)) O)~[x=Xo(-~) ---- Au  (*), (10) 

- -  ( z  (T (x, ~)) 0).~1~=~ = 0, 

(A'zAu) (-c) = 0 (di, "0, i ---- 1, k, 

(ii) 

(12) 

where T(x, ~) is the solution of the problem in Eqs. (4)-(7) for the specified function 
u(T) (the point at which the derivative A' is sought). Here A'Au = {A1'Au ..... Ak'AU } 

The value of the conjugate operator (A')*r $ = {~i, .... ~k} is found from the solution 
of the conjugate boundary problem 

C(T(x, x ) ) , , + L ( T ( x ,  , ) ) , ~ =  0, X o ( * ) < x < b ,  0 ~ < ~ ,  ( 1 3 )  

(14) 

- -  ~, (T (x, "c)) *x + C (T (x, ~)) X o (T) Xblx=Xo(~) = 0, (1~) 

- -  )~ (T (x, T)) #x]~=b ---- O, 

[~b(d i - O ,  T ) = , ( d  i-~-O, T), i---- 1, k, 

(16) 

(17) 

- -  ~. ( t  (x, '~)) ~rx=,~+o + Z (T (x, '~)) q~:,f.=a,-o = O~ ('~) ~ ('~), i = 1, k, 

((A')* q)) (-c) = r (Xo (% "~). 

( 1 8 )  

( i 9 )  

The conditions in Eq. (17) express the continuity of the function @ at points 
d i, while Eq. (18) expresses the discontinuity of -X~x at points d i with a discontinu:ty 
of magnitude pi(T)$i(T ). 

Thus, at each iteration in the method of fastest descent, for the approximation un+z(~ ) 
obtained, the direct problem is solved, and the coefficients of the conjugate problem in 
Eqs. (13)-(19) and $i(T) = T(di, ~, Un) - fi(T) in Eq. (18) are calculated. Then Eq. (19) 
gives the value of the gradient (J'un)(Z) = ~(X0(T), ~). To determine the linear estimate 
of the descent step, the problem in Eqs. (8)-(12) is solved with Au(z) = (J'un)(Z) , and the 
corresponding coefficients are calculated using T(x, T, Un). Here 

1 $~ (Xo (~), ~) d~ 
0 
k T~ 

i=l 0 

In the presence of a priori information on the smoothness of the desired solution, it 
may be taken into account using one of the methods proposed in [14-16]. The iterative pro- 
cess may be halted by means of the discrepancy criterion. 

Gradient algorithms allow the measurement errors to be taken into account also in :~he 
case when the boundary conditions in the direct problem are determined by experiment (and not 
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specified accurately). This is demonstrated for the example of the following boundary IHP 

C ( T ) T . c = ( % ( T ) T ~ ) x ,  O < x < b ,  O<-v~ 'vm,  

T (x, O) = To (x), 

(20) 

(21) 

--XTxlx= o = ul(T), (22) 

T(b,  T)= g(T), (23) 

(Au)(T,) = T(d ,  "r,) = [('r d c ( O  , b). (24)  

Suppose that the temperatures g(x) and f(~) are experimental functions and thus contain 
random errors. The function g(~) appears in the condition of uniqueness of the boundary 
problem in Eqs. (20)-(23), i.e., in the definition of the operator A, and f(~) may be re- 
garded as the right-hand side in Eq. (i). 

In the linear case, when C = C(x, x) and % = %(x, ~), the influence of random errors 
in the function g(x) may be taken into account on passing to the integral analog of the prob- 
lem in Eqs. (20)-(24) using the superposition principle 

S K~ (t, ~) u~ (~) d~ = f~ (t), 
0 

where 
b t 

[1 (t) = f (t) - -  5 K0 (t, x, ~) T O (~) d ~ -  S K~ (t, T) g (~) dT. 
0 0 

This  e n t a i l s  e s t i m a t i n g  t h e  e r r o r  i n t r o d u c e d  by t h e  l a s t  i n t e g r a l  t e rm on t h e  r i g h t - h a n d  
s i d e  o f  f l ( ~ ) .  Th i s  e r r o r  d e c r e a s e s  w i t h  i n c r e a s e  in  t h e  d i s t a n c e  between p o i n t s  d and b. 

In  t h e  n o n l i n e a r  c a s e ,  t h e  s u p e r p o s i t i o n  p r i n c i p l e  does  n o t  h o l d ,  and t h e r e f o r e  a n o t h e r  
approach  i s  u s e d .  The t e m p e r a t u r e  T(b,  ~) = u2(x )  i s  i n c l u d e d  in  t h e  f u n c t i o n s  t o  be d e t e r -  
mined,  i . e . ,  i t  i s  assumed t h a t  i t  i s  r e q u i r e d  t o  d e t e r m i n e  t h e  f u n c t i o n s  u l ( x ) ,  u2 (x )  from 
the specified (with an error) functions f(~), g(~). 

To formalize the problem in the2 form in Eq.2(1), the space U of vector functions u = 
{ul, u2} with norm IIulIu 2 = UulULa[0,Xm] + pllu211L2[o,Xm], P > 0 is introduced, as well as the 

space F of vector functions f ----- {f, g} with norm UflIF 2= llfil~a[0,Xm] + ~1[ I 2 glL2[0,Xm], 7 > 0. 
Then the given IHP takes the form 

A u = [ ,  A u = { T ( d ,  T, u), uf(* }, (25) 

where T(d ,  T, u)  i s  found  from t h e  s o l u t i o n  of  Egs.  ( 2 0 ) - ( 2 3 ) ,  when g (x )  in  Eq. (24) i s  
r e p l a c e d  by i t s  e s t i m a t e  u f ( x ) .  The d e r i v a t i v e  A 'hu  i s  found  u s i n g  a l i n e a r  boundary  p rob-  
lem 

(c  (r  (x, ~)) o)~ = (~ ('r (x, ~)) o)=~, 

o (. ,  o) = o, 

(--~o)~1.=o = Au, (.), 

(26) 

(27) 

(28) 

0 (b, T) = ku~(*). (29)  

Here A'Au = {o(d, x), Au2(x) } = {O1(d, x)+ O2(d, x), &u=(x)} = {Alku 1+A~Au=, Au2} where 81(d , ~) 
is the solution of Eqs. (26)-(29) when Au2(x) ~ 0 and 8=(d, ~) is the corresponding solution 
when Au1(x) ~ 0. 

To derive the representation of the conjugate operator (A')* in accordance with this de- 
finition, the identity 

(au, Au*)v = (S'Au, ~)~ 

is written for any 0 = {01, r eF and any Au = {ku l, Au2}eU, where Au* = (A')*r is the value 
of the conjugate operator. Hence 
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(Au, Au*).  (&4, ~* ' t)(Au~, . = A <  )e= w Au*)e= - 

= (AiAu~ + d'2Au~., qh)~= + 1' (Au., %)~, = (Au~, A~'*qh)/.~ + (Au~, d'*2 % + ?%)~E 

Consequently 

= %, - - ( A ; * % + ? ~ 2 )  �9 

The values of the conjugate operators Al'* and A2'* are found from the solution of the 
same conjugate boundary problem 

C (T (x, t)) g ,  @ s (T (x, t)) ~ = 0, ( 3 0 )  

,p(x, * . d =  o, ( 3 1 )  

- - r  o, ( 3 2 )  

J~(b, ~c) = 0, ( 3 3 )  

~ ( d - - o ,  T ) : : ~ ( d + O ,  % 

--7 .%1.=a--o  -,- ' ~v 'G=~-o  = % (~c), 

(34) 

(35) 

but from different formulas 

AI*% = ~ (0, ~c), ~*q~,o = - - k e G =  ~. 

The iterative algorithm in Eq. (3) takes the following form in this case 

u? +~ (t)  = u7 (t)  - -  ~ (o, ~) = ~t? (~) - 13,~Au~ (~), 

~ + ~ ( ~ )  u ~ ( t )  % ~ ~ ,, " ~ '~' = ~ - -  - - -  [ - -  ~ l . = b  + , (.~ ('c) - -  g (t))l = u2 (t)  - G A u 2  ~T), 
9 

where ~pn(x, z) is the solution of Eqs. (30)-(35) when ~i(z) = T(d, ~, u n) - f(~) (T(x, ~, 
u n) is the solution of Eqs. (20)-(23) when u n = {ul n, u2n}). 

The linear estimate for the descent step Sn is calculated in the given case from the 
formula 

Tm T~ 

j (AEI ) at + 
~ n  = 0 0 

T?'O, Z/B, 

(A 2 ? d t  
o 

where 0(d, ~) is the solution of Eqs. (26)-(29) when Aul n and Au2 n are substituted 
into Eqs. (28) and (29), respectively. 

The coefficients of Eqs. (26)-(29) and (30)-(35) at each iteration are calculated ising 
the temperature field T(x, T, Un). 

The iterative process must be terminated by the condition 

IT (4 , ,  - f dt +v (.I) dt + vG 
0 0 

where 6f, 6g are the mean square errors in specifying the functions f(~) and g(~), respec- 
tively. 

The weighting factors 9 and y may be chosen by preliminary modeling or by using a i1odi- 
fled method of fastest descent, with individual choice of the descent step from each compo- 
nent of the descent direction in accordance with the procedure outlined in [17]. Then O = 
y = 1 may be assumed. Any smooth function sufficiently close to g(%) may be taken as the 
initial approximation with respect to the second component u~(~). Within the frame- 
work of this algorithm a priori information on the smoothness of the desired functions 
may be taken into account. 
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This approach to the solution of IHP, when the boundary conditions are specified with 
errors, should be applied, ultimately, only when the distance between points b and d is 
sufficiently small and the errors in specifying g(T) cannot be neglected. 

Note, in conclusion, that the methodology of iterative regularization of incorrect prob- 
lems developed in the last ten years has a broad spectrum of applications in the diagnostics 
and identification of heat- and mass-transfer processes. This methodology may also have 
useful applications in solving many inverse problems of mathematical physics arising in 
other fields of scientific research and engineering application. 
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SURVEYS 

SOME PROBLEMS OF MASS EXHANGE IN MAGNETIC SUSPENSIONS AND COLLOIDS 

E. Ya. Blums UDC 537.84:532.529.2:532.75 

Recently, the attention of specialists has been drawn to different aspects of the interac- 
tion of a magnetic field with dispersive magnetized media. A new direction in technology 
has been developed successfully, the magnetic separation of dispersive materials. Studies 
have been conducted on the extraction of magnetic components from a nonmagnetic liquid [1-3] 
and weakly magnetic materials from a magnetic liquid [4-6]. High-gradient magnetic separa- 
tion of weakly magnetic microparticles has also been intensively studied [7]. Finally, nano- 
particles of magnetic liquids are separated magnetically [8]. Magnetophoretic transport of 
colloidal particles influences the stability of magnetic liquids as well as the working capa- 
city of many technical devices using magnetic liquids (magnetoliquid seals, vibration dam- 
pers, printing units with magnetic liquids, etc. [9]). Below we give a concise review of 
studies on the mass transport of particles in magnetic colloids and suspensions, conducted 
at the Institute of Physics of the Academy of Sciences of the Latvian SSR. 

i. Magnetophoresis of Particles in a Viscous Liquid. The physical basis for the mass 
transport of particles in a magnetic field is the magnetophoretic force 

F~=Vpo(MV) B, (1) 
which is determined by the magnetization of the particle M = M(H) and its volume V. Calcula- 
tion of the force (i) in the general case of nonequilibrium magnetization is a complicated 
problem. The quasistationary case M = KH is the easiest one to solve. For this case 
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